

GMS560: a broad targeted NGS gene panel for comprehensive genomic profiling of solid tumors

Date: 2023-11-13

Genomic Medicine Sweden E-POST info@genomicmedicine.se webb www.genomicmedicine.se

Design, validation and implementation

The GMS560 gene panel consists of a genomic DNA (gDNA) target capture panel module and an RNA (cDNA) junction capture panel module for comprehensive genomic profiling of solid tumors in clinical practice as well as for research applications. The modules can be used separately. The design, optimization and validation is the result of a nationwide collaborative effort within the Genomic Medicine Sweden (GMS) Solid Tumor work package. This synopsis describes the intended use, range and type of genetic aberrations that can be analyzed by the panel as well as basic technical specifications of GMS560. The national validation, which included >200 clinical samples with known genetic aberrations and multiple commercial reference standards, is completed and forms the basis for the summary below. This effort has involved pathologists, molecular biologists, medical geneticists and bioinformaticians at the seven Swedish Genomic Medicine Centers (GMC). Implementation at regional GMC/Clinical Genomics nodes is ongoing. More details will be released shortly (manuscript in preparation). Please contact your local GMS representative for more information about use and clinical implementation.

Intended use

The GMS560 gene panel is a next generation sequencing (NGS) based assay for the detection of base substitutions (SNVs), insertions and deletions (INDELs), copy number variations (CNVs) and gene rearrangements (fusions) as well as the genomic signatures microsatellite instability (MSI) and tumor-mutational burden (TMB). For clinical application, the assay is intended for comprehensive genomic profiling of formalin-fixed paraffin-embedded (FFPE) tumor samples and cytological specimens. The panel is designed to cover treatment predictive genetic aberrations, diagnostic biomarkers for tumor subtyping, and to support the detection of exploratory targets for patient inclusion in clinical trials. Moreover, in research settings, the assay can be used to assess a broad range of cancer-associated biomarkers of relevance for tumor biology, regardless of established clinical significance. The gene panel is intended to harmonize broad cancer testing on a national level and to allow for the addition of novel cancer biomarkers in future iterations.

Panel design and analytical performance

The gene content of GMS560 is described in **Figure 1**. The detection of SNVs, INDELs and CNVs together with biomarker signatures is based on extracted gDNA and analyzed with the gDNA target capture panel. Gene rearrangements can be detected by the gDNA panel with expected technical limitations common to all gDNA designs. The detection of rearrangements is

supplemented by a panel module for targeted sequencing of total RNA which subsequently is converted into cDNA. Kapa Biosystems reagents, in combination with Twist Bioscience probes and reagents are used for library preparation and enrichment, respectively, following the manufacturers' protocols with minor modifications. The validation sequencing was performed on Illumina NextSeq and NovaSeq sequencers.

In order to confidently define all types of genomic aberrations in patient samples, the following sample criteria have been evaluated and are recommended for analysis:

DNA input amount = 100 ng, Tumor cell content \ge 20 %, RNA input amount = 50 ng.

Samples with lower input amounts can be analyzed but need to be interpreted with care as sensitivity and specificity might be lower especially in regions outside clinical hotspot positions.

SNVs and INDELs: The exons of 544 genes are targeted by DNA capture (top panel, Figure 1). GMS560 is validated for the detection of small variants (SNVs and INDELS) in DNA extracted from FFPE and cytology samples with a tumor cell content of at least 10%. Mutations can be detected at variant allele frequency (VAF) \geq 2% in validated clinical hotspot positions, and at VAF \geq 5% across the rest of the panel content in samples with a total read coverage of \geq 50M and a median target coverage of \geq 500x. At lower coverage the criteria for a positive mutation call are VAF \geq 5% and at least 20 variant reads.

CNVs: The main CNV backbone, spanning the entire genome, has probes placed with an average distance of 1 Mb. Amplifications (high-copy number gains, above 6x) are reported for 21 genes (**Figure 1**, Copy number analysis, Amplifications). Additionally, there is a reinforced CNV backbone extending 3 Mb on each side of 20 genes where copy number losses may be clinically relevant (**Figure 1**, Specific copy number analysis, Deletions).

TMB: GMS560 covers approximately 1.6 Mb of coding sequence and is thus suitable for TMBscore calculation. TMB-values can be scored with a high concordance to current reference methods.

MSI: A backbone of microsatellite loci in non-complex genomic regions known to be informative for the classification of MSI-H cases are included in the design. MSI scores as computed from GMS560 are highly sensitive and specific for determining MSI-status in colorectal cancer samples.

Fusion gene detection by targeted RNA-sequencing: Capture probes for the cDNA panel were designed by the "junction capture method" with a dense probe tiling around the 5′ and 3′ exon junctions in 44 genes. Treatment-predictive fusion genes were given the highest priority; the design includes all exons in all genes for which there are currently available approved targeted treatments in any solid tumors (bottom panel, Figure 1).

Bioinformatics

The GMS560 data has been analyzed using the Twist Solid Pipeline and reports SNVs, Indels, CNVs, fusions and biomarkers (TMB and MSI) as well as visualization of CNVs and QC. The pipeline, which is a collaboration project between multiple GMC/CG nodes, is constructed using Hydra-Genetics modules. These modules are based on Snakemake, a workflow language that ensures flexibility and scalability. All tools within the pipeline are containerized, to ensure portability and reproducibility. To maintain good quality standards, the pipeline undergoes peer-review by multiple experienced bioinformaticians. Furthermore, a comprehensive suite of automatic tests, including unit tests, integration tests and code style checks are executed with each code and configuration update to guarantee reliability.

The source code is publicly available on GitHub and documentation is accessible via ReadTheDocs.

Ongoing validation efforts

Current efforts to supplement the clinical validation of additional diagnostic modules include: Fusion gene detection on DNA-level, homologous recombination deficiency (HRD) and calling of a larger range of copy number variations (including larger structural deletions and loss of heterozygosity).

				N/	tation analys	is				
ABL1	BRAF	CTCF	ERCC3	GLI1	JAK2	MGMT	PALB2	PTMA	SESN2	ТЕК
ABRAXAS1	BRCA1	CTLA4	ERCC4	GNA11	JAK3	MITE	PARP1	PTPN11	SETBP1	TENT5C
ACVR1	BRCA2	CTNNB1	ERCC5	GNA13	JUN	MLH1	PARP2	PTPN14	SETD2	TERT
ACVR1B	BRD4	CTNND1	ERG	GNAQ	KANSL1	MLH3	PAX5	PTPRC	SF1	TET1
ACVR2A	BRD7	CUL1	ERRFI1	GNAS	KAT2B	MN1	PBRM1	PTPRD	SF3B1	TET2
ADGRG6	BRIP1	CUL3	ESR1	GPS2	KDM5A	MRE11	PCBP1	PTPRS	SFRP1	TGFBR1
AJUBA	BTG2	CYLD	ETV1	GREM1	KDM5C	MSH2	PDCD1	PTPRT	SH2B3	TGFBR2
AKT1	CACNA1A	CYSLTR2	ETV6	GRIN2D	KDM6A	MSH3	PDCD1LG2	RAB35	SIN3A	THRAP3
AKT2	CARD11	DACH1	EWSR1	GSK3B	KDR	MSH6	PDGFRA	RAC1	SLX4	TLE1
AKT3	CASP8	DAXX	EZH2	GTF2I	KEAP1	MST1	PDGFRB	RAD21	SMAD2	TLR4
ALB	CASR	DAZAP1	FANCA	H1-2	KEL	MTOR	PDPK1	RAD50	SMAD3	TMEM127
ALK	CBFB	DCHS1	FANCB	H1-4	KIF1B	MUC6	PDS5B	RAD51	SMAD4	TMPRSS2
ALOX12B	CBL	DCHS2	FANCC	H2AX	KIT	MUTYH	PGR	RAD51B	SMARCA1	TNFRSF14
AMER1	CCND1	DCUN1D1	FANCD2	H3-3A	KLF4	MXI1	PHOX2B	RAD51C	SMARCA2	TOP1
ANKRD11	CCND2	DDR2	FANCE	H3-3B	KLF5	MYB	РІКЗСА	RAD51D	SMARCA4	TP53
APC	CCND3	DDX3X	FANCF	H3-5	KLF6	MYBL1	<i>РІКЗСВ</i>	RAD52	SMARCB1	TP63
APOB	CCNE1	DIAPH2	FANCG	H3C10	KMT2A	MYC	PIK3CD	RAD54L	SMARCD1	TRAF3
APOBEC3B	CCNQ	DICER1	FANCI	H3C2	KMT2B	MYCL	PIK3CG	RAF1	SMARCD2	TRAF7
AR	CD274	DIS3	FANCL	H3C3	KMT2C	MYCN	PIK3R1	RARA	SMARCE1	TSC1
ARAF	CD70	DKK1	FANCM	HDAC1	KMT2D	MYD88	PIK3R2	RASA1	SMC1A	TSC2
ARHGAP35	CD79B	DKK4	FAT1	HDAC2	KNSTRN	MYH9	PIM1	RB1	SMC3	U2AF1
ARID1A	CDC27	DMD	FAT2	HES2	KRAS	MYOD1	PLCB4	RBM10	SMO	USP9X
ARID1B	CDC73	DNAJB1	FAT3	HES3	LATS1	NBN	PLCG1	RECQL	SOCS1	VEGFA
ARID2	CDH1	DNMT1	FAT4	HES4	LATS2	NCOA2	PLCG2	RECQL4	SOS1	VHL
ARID5B	CDK12	DNMT3A	FBXW7	HES5	LDB1	NCOA3	PLK2	RET	SOX17	WIF1
ARRDC1	CDK4	DNMT3B	FGF19	HEY1	LYN	NCOR1	PLXNB2	RHEB	SOX2	WRN
ASXL1	CDK6	DOT1L	FGF3	HGF	LZTR1	NCOR2	PMS1	RHOA	SOX9	WT1
ASXL2	CDK8	DPYD	FGF4	HIF1A	MACF1	NF1	PMS2	RHOB	SPEN	WWC1
ATF/IP	CDKN1A	E2F1	FGFR1	HLA-A	MAD2L2	NF2	POLD1	RICTOR	SPOP	XPO1
AIM	CDKN1B	E2F3	FGFR2	HLA-B	MAML3	NFE2L2	POLE	RITI	SPRED1	XRCC1
AIR	CDKN2A	EED	FGFR3	HLA-C	MAP2K1	NFKBIA	POLQ	RNF111	SPIAI	XRCC2
AIRX	CDKN2B	EEFIAI	FGFR4	HNFIA	MAPZKZ	NFKBIE	POLR2A	KNF43	SPIANI	YAPI
AURKA	CDKN2C	EGFK	FH	HRAS	MAP2K4	NIPBL	PUTT	RUSI	SKC	YESI
AURKB	CEBPA	EGR3	FLCN	HUWEI	WAP3K1	NKX2-1	PPARG	RPL22	SKSFZ	
AURKC	CENPA	EIFIAX	FLII	1D3	IVIAP3K13	INKX3-1	PPIVILD	RPLS	STAGZ	2010/0
AXINI	CHDI	EIF4AZ	FLI3 FLTA	IDH1	NIAP3K4	NOTCHI	PPPZRIA	RPS6KA4	SIAI3	ZC3H1ZA
AXINZ	СНОЗ	ELF3	FLI4		IVIAPK1	NOTCH2	PPP2K2A	RPSOKB2	STATER	
AAL D2M	CHD4 CHD9	ELUC	FOXAL		NAAV	NOTCHA	PPP4KZ	PPACO	STATSD	ZFP30L1 7ED2612
DZIVI DAD1		EIVIST	FOXAZ	IGFIK	MCL1			RRAJZ	STATO 57V11	ZFP 30L2 7NAVNA2
DAP1 PAP1		EPSUU EDAC1	FOXL2	INDNE IV7E1	NCDU1	NPIVII		DVDA	51111	ZIVITIVIZ 7N/VN/2
BARDI BCI 10		EPASI	FOXOI	IKZFI ILEST			PRDIVI14 DRFY2	5 <i>1\/1</i>	SIKIS	ZIVITIVIS 7NE750
BCLIU	CNTNE	EFCANI EDHAD	FOXOS FOXD1	1LUS1 11 7R			DRKAR1A	SCAEA	SUFU SU712	ZNF730 7NRE3
BCI 2I 1	COI 541	EPHA2	FURP1	IL/N INPPAR	MDM4	NJDZ NTRK1	PRKCI	SCAF4	50212 ΤΔΕ1	ZNKF3 7RSR2
BCI 2I 11	CRR1	EPHAJ EPHAJ	EVN	INPP 40	MECOM	NTRK2	PRKD1	SDHAF2	ΤΔΟΚ1	ZNJNZ
BCI6	CREBRD	EPHR1	GAB1	IRF2	MED12	NTRK2	PRSS1	SDHAI Z	TRI 1 XR1	
BCOR	CRKI	ERRR2	GAB1	IRF4	MEE2R	NI IF2	PSEN2	SDHC	TRX3	
BCORI 1	CRIE2	ERBR3	GABRAG	IRF6	MEN1	NUP93	PSIP1	SDHC	TCF12	
BIM	CSDF1	ERBR4	GATA2	IRS2	MFT	ΡΔΚ1	PTCH1	SERPINR3	TCF3	
BMPR1A	CSE1R	ERCC2	GATA2	IAK1	MGA	PAK5	PTEN	SERPINB4	TCF7L2	
	03/11/	Encez	0/11/10	571111		17110		SER IND-	101722	
Amplifications:				Сору	number anal	ysis				
ALK*	BRAF*	CDK6*	ERBB2*	FGFR2*	FGFR4*	KRAS*	MTOR*	MYCN*	NTRK2*	PDGFRA*
AR*	CDK4*	EGFR*	FGFR1*	FGFR3*	KIT*	MET*	MYC*	NTRK1*	NTRK3*	
eletions:										
ATM	BRCA1	CDH1	CDKN2B	FANCA	MCPH1	PALB2	RAD51C	SPRED1	TSC1	
BAP1	BRCA2	CDKN2A*	CHD1	FAT1	NF1	PTEN*	RB1	TP53	TSC2	
reported genes										

* reported signatures

RNA (fusion gene analysis) (44 genes)											
АКТЗ	EGFR	ESR1	EWSR1	FGFR4	MET	NCOA1	NTRK3	PPARG	PRKD3	ROS1	
ALK	ERBB2	ETV1	FGFR1	FUS	MGMT	NRG1	PDGFRA	PRKCA	RAF1	SS18	
AR	ERBB4	ETV4	FGFR2	HMGA2	MYB	NTRK1	РІКЗСА	PRKD1	RELA	TMPRSS2	
BRAF	ERG	ETV5	FGFR3	MAML2	MYBL1	NTRK2	PLAG1	PRKD2	RET	YAP1	

Figure 1. GMS560 content.