Vad är genomik?

Under de senaste tio åren har det skett en snabb teknikutveckling som lett till att människans hela arvsmassa kan läsas av på mindre än ett dygn och till en bråkdel av kostnaden för det första genomet som analyserades. Detta har möjliggjort att kraftfulla gensekvenseringstekniker nu kan användas i sjukvården.

Vad är DNA?

DNA, eller deoxyribonukleinsyra, är det kemiska ämne som bär den genetiska informationen, även kallad arvsmassa. Informationen i DNA sparas som en kod som består av fyra olika byggstenar, kemiska baser; adenin (A), thymin (T), cytosin (C) och guanin (G). Ordningen, eller sekvensen, av dessa baser utgör en instruktion för att bygga och upprätthålla en organism, som människan. Detta liknar sättet som bokstäver i alfabetet förekommer i en viss ordning för att bilda ord och meningar.

Vi bär alla olika genetiska varianter i DNA som skiljer mellan människor. Varianter kan antingen ärvas från en förälder, och finns då i alla celler i kroppen, eller uppstå någon gång under en persons liv, och finns då endast i vissa celler. Vanliga genetiska varianter ger upphov till helt normala skillnader mellan människor som till exempel ögonfärg, hårfärg och blodtyp. Detta skiljer mot sjukdomsassocierade varianter som bland annat orsakar sällsynta ärftliga sjukdomar eller är involverade i utveckling av cancer.

Vad är en gen?

En gen är den grundläggande fysiska och funktionella enheten för ärftlighet. Gener består av DNA. Människan har mellan 20 000-22 000 gener. Varje individ har två kopior av varje gen, en som ärvs från mamman och en från pappan.

De flesta gener har instruktioner för att göra molekyler som kallas proteiner. Proteiner behövs för alla funktioner i vår kropp. Avsaknad av ett protein eller ett protein som fått en förändrad funktion på grund av en sjukdomsassocierad variant kan leda till sjukdom.

Vad är ett genom?

Ett genom är den sammantagna arvsmassan hos en levande organism. Genomet innehåller all den information som behövs för att bygga upp och upprätthålla organismen. I människor finns, i alla celler som har en kärna, en kopia av hela genomet från vardera föräldern, alltså två uppsättningar av 3 miljarder DNA baspar. Studie av hela arvsmassan, genomet, kallas genomik.

Kartläggning av genom med DNA-sekvensering

DNA-sekvensering är processen för att läsa av ordningen av baserna i DNA-sekvensen. Den tidiga DNA-sekvenseringen var arbetskrävande och långsam och det tog därför flera år att sekvensera endast en mindre del av genomet. Idag kan man läsa ett helt genom på mindre än ett dygn och till en betydligt lägre kostnad. Detta har möjliggjort att den här nya tekniken kan användas i sjukvården.

Moderna sekvenseringsteknologier bygger på en teknologi som kallas next-generation sequencing (NGS) eller massiv parallell sekvensering (MPS).

Sekvenseringstekniken används till exempel i sjukvården idag vid diagnostik av sällsynta diagnoser och cancer, men även för att hitta genetiska avvikelser hos ett foster, det så kallade NIPT testet (Non-Invasive Prenatal Testing). Med ett enkelt blodprov från den gravida kvinnan kan man ersätta fostervattenprovet och minska risken för missfall.

Vad är precisionsmedicin?

Precisionsmedicin, eller individanpassad vård, är ett relativt nytt begrepp som blir allt viktigare inom sjukvården. Precisionsmedicin omfattar diagnostik, behandling och uppföljning som gör det möjligt att ge patienter vård som anpassats efter individuella förutsättningar. Precisionsmedicin baseras på den explosion av medicinsk kunskap som skett de senaste 10 åren och tar till sin hjälp en bred uppsättning storskaliga teknologier där gensekvensering är en. Detta tillvägagångssätt gör det möjligt för läkare att ge en mer individanpassad behandling och uppföljning för en specifik diagnos.

NGS används idag i svensk sjukvård för att utföra helgenomsekvensering för en rad sällsynta diagnoser. Bland annat då det finns en hög misstanke om medfödd metabol sjukdom. Medfödda fel i metabolismen kan framträda akut och kan leda till allvarlig hjärnskada eller tidig död om de inte behandlas korrekt.

På liknande sätt har NGS-teknologin medfört att kunskapen om genetiska förändringars betydelse för uppkomsten av cancer har ökat markant de senaste åren. Tack vare det kliniska införandet av NGS inom cancerdiagnostik de senaste åren kan vi nu avsevärt förbättra diagnostik, behandling och uppföljning av patienter som insjuknar i dessa sjukdomar. För flera cancerformer, till exempel lungcancer, tjocktarmscancer och leukemi kan vi nu välja mer specifik behandling beroende på vilken genetisk förändring som påvisas i cancercellerna.

Läs mer om hur precisionsmedicin och NGS-tekniken används inom sjukdomsområdena:
Sällsynta diagnoser
Hematologi
Solida tumörer
Infektionssjukdomar
Farmakogenomik
Barncancer